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Intrinsic localized modes and chaos in damped driven rotator lattices
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It is shown that intrinsic localized rotational modes~ILRMs! in parametrically driven damped lattices of
coupled classical dipole rotators can become chaotic without losing their localized character. Insight into this
behavior is obtained by means of a nonlinear stability analysis. Moreover, we discuss a robust scheme for
exploiting a spatially extended chaotic state to generate stationary randomly spaced arrays of driven ILRMs,
and show that the associated absorption exhibits unusual signatures.@S1063-651X~99!51308-1#

PACS number~s!: 05.45.2a, 63.20.Ry, 63.20.Pw, 78.20.Bh
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While vibrational intrinsic localized modes~ILMs! arising
from nonlinearity in periodic lattices are by now well unde
stood theoretically@1#, they have yet to be verified in th
laboratory. Here, we discuss dynamical features of intrin
localized rotational modes~ILRMs! in lattices of coupled
rotators, which give promising directions for filling this ga
Our model represents a simplified view of dipolar molecu
with orientational degrees of freedom which are adsorbed
crystal surfaces~see, e.g.,@2#! or occur in crystals such a
KCN @3#. Josephson junction ladders@4# also fit into this
scheme, although here we will treat the rotators as optic
driven electric dipoles. Atomic scale localized dynamic
structures at surfaces may be of technological interest in
context of high temperature catalytic processes or high d
sity memory units.

ILRMs are stationary solutions of the coupled nonline
classical equations of motion and consist of a rotational c
ter comprising one or few rotating dipoles plus libration
wings. ILRMs in undriven lattices were proposed recently
Takeno and Peyrard@5#. However, real systems exhib
damping, so that external driving is needed to sustain stat
ary modes. Hence, our focus is on continuously driven
damped lattices. In contrast to the recently discussed cas
transient optical excitation of vibrational ILMs@6#, we will
see that the richer dynamics of driven rotator lattices lead
a robust scheme for both creating and detecting ILRM
within the simpler case of continuous optical driving. This
achieved by exploiting the existence of a regime of spatia
extended chaotic response. We will also discuss a diffe
regime where the system exhibits an interestinglocalized
chaotic response. While aspects of chaos in systems with
or a few rotators have been discussed in the literature~see,
e.g., @7#!, ILRM-type excitations in lattices were not in
cluded. Our concern is dynamical behavior that combi
both phenomena.

Here we discuss a one-dimensional~1D! lattice of identi-
cal dipoles with one orientational degree of freedomu l per
site l , although we have generalized our work to unrestric
rotations and higher dimensions@8#. After rescaling the time
to eliminate the dipoles’ moment of inertia, we obtain t
equations of motion in the dimensionless form

*Present address: Infineon Technologies, Munich, Germany.
PRE 601063-651X/99/60~2!/1134~4!/$15.00
ic

s
n

ly
l
e

n-

r
n-
l
y

n-
d
of

to
,

y
nt

ne

s

d

2 ü l5o2 sin~u l !1 f l~ t !1gu̇ l

1k2 (
l 85 l 61

@2sin~u l2u l 8!13 cos~u l !sin~u l 8!#.

~1!

Hereo2 denotes the strength of a hindering potential mod
ing, e.g., an adsorbate-substrate coupling,g is the linear
damping constant, andk2 is the strength of nearest-neighb
~NN! dipole-dipole coupling. The lattice is oriented alongz,
with the dipoles rotating in thexz plane. The driving force
f (t) is parametric for the case of dipoles coupled to an
ternal electric fieldf l(t)5 f d cos(vdt)sin(ul), and it is non-
parametric for an ac-driven Josephson ladder. We focus
on the parametric driving case. Our parameter values
k250.1, o251, f d51, andg50.1.

Stationary solutions are efficiently obtained by invokin
an extended rotating-wave approximation~RWA!. We in-
clude frequencies ranging from the first subharmonic of
driving frequency~to describe the primary librational re
sponse! through the second harmonic~needed for the free-
rotor limit!. Thus we take

u l~ t !5vdtk l2t l

1 (
n51

4

@ul
(n) sin~nvdt/2!1v l

(n) cos~nvdt/2!#, ~2!

wherek l is fixed at 1 for rotational motion and is zero fo
librations. After substituting this into Eq.~1!, we project out
equations for t l , ul

(n) , and v l
(n) by multiplying by 1,

sin(vdt/2), cos(vdt/2), etc. and numerically integrating ove
two driving periods 4p/vd . The resulting set of coupled
nonlinear equations is solved using standard numerical m
ods, and the predictions are verified by molecular dynam
~MD!.

The relevance of a stationary solutionzI (t)

[@u1(t),u2(t), . . . ,u̇1(t),u̇2(t), . . . # obtained this way de-
pends crucially on its dynamical stability. The Floquet s
bility analysis is based on the linearized equations of mot
for perturbationsdzI (t) of the stationary mode. Following
Ref. @9#, we set up the linear mappingdzI (t1T)
5MI •dzI (t), where T is the predicted mode period. If th
matrix MI has any eigenvaluesl j with ul j u.1, zI (t) is
R1134 © 1999 The American Physical Society
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unstable; otherwise, it is stable. Beyond the linear regim
the perturbation eigenvectors$xI j% of MI are useful for ana-
lyzing nonlinear instability. We monitor the strobed differ
ence between the mode’s actual trajectory, obtained in
MD simulation, and its predicted RWA trajectory, in term
of the eigenvectors,

zIMD~nT!2zIRWA~nT!5(
j

aj
nxI j . ~3!

The amplitudesaj
n are not only convenient for simple ver

fication of predicted instability growth rates in the linear r
gime, but they also provide important insights into comp
nonlinear instabilities, as will be seen below in our discu
sion of localized chaos.

The simplest types of response for an isolated driven
pole comprise zero response, librational response atvd/2,
and rotation atvd . For a lattice, we find stable ILRMs ove
a range of driving frequencies. These modes consist o
rotational center atvd , accompanied by either spatially de
caying librational wings atvd or by nondecaying librationa
wings atvd/2. Moreover, the rotational centers can invol
several adjacent sites, without qualitatively altering the s
bility properties. For clarity, we first discuss ILRMs having
single rotating dipole.

For large driving frequencies (vd@2.9) we find ILRMs
that closely resemble the undriven modes discussed in
@5#, i.e., having a rotational center and spatially decay
wings, all atvd . However, the external force causes the
modes to occur in pairs consisting of one stable and
unstable solution, differing mainly by the phase of their r
tational centers. We begin with the stable ILRM forvd53,
slowly decreasevd in our MD simulation, and monitor the
rescaled period-average kinetic energy at each sitel ,

r l~ t !5
1

vd
2Td

E
t

t1Td
u̇ l

2dt, ~4!

whereTd52p/vd is the driving period. Note thatr l(t)'1
for rotational motion, whiler l(t),1 for librations. Figure 1
surveys some results. When the frequencyvd'2.85 is
reached, the ILRM spontaneously develops a spatially
tended, subharmonic librational background of acoustic ch
acter, i.e., the background dipoles librate in phase. Fur
decrease ofvd to '2.48 leads to an additional subharmon
bifurcation, and finally after a Hopf-bifurcation~see, e.g.,
Ref. @14#! to a range of chaotic response (vd
'2.38,. . . ,2.41), which has an interesting nature.

First, we notice in Fig. 1 that the chaotic spread in ph
space decreases with increasing distance from the mo
rotational center; the chaos is localized. Second, the mo
time trajectories$u̇ l(t)% ~not given here! reveal two time-
scales. The first corresponds to the driving periodTd , and
the trajectories appear nonchaotic on this timescale. H
ever, on a larger time scale (;100Td at vd52.4), we find
that the envelopes of the trajectories exhibit a chaotic ‘‘pu
ing,’’ whose details are sensitive to small changes ofvd .
Insight is provided by the expansion of Eq.~3!, using the
Floquet eigenvectors for the unstable RWA-predicted ILR
Results forvd52.4 are given in Fig. 2, which shows tha
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only two of the perturbation eigenvectors gain apprecia
amplitudes with time. These are an instability eigenvectorxI 1

with eigenvalueul1u.1 ~denoted as theprimary instability!
and its associated ‘‘quasisymplectic’’ partnerxI 2 with l2

5exp(2gT)/l1 ~secondaryinstability!. Both xI 1 and xI 2 are
well localized, and they become strongly coupled anh
monically as the instabilities grow in time. It is this interpla
which leads to the localized chaos: after the initial expon
tial growth phase of the primary instability it begins drivin
the secondary instability. As the secondary instabil

FIG. 1. Bifurcation diagrams for the period-average kinetic e
ergyr l at the rotational centerl 0 and its first and second neighbor
for an ILRM in a periodic ten-dipole lattice. The MD simulatio
was begun for the stable RWA solution atvd53, and after 1000
cycles of the driving field,r l was plotted for the next 500 cycle
~thin dots!. The frequency was then lowered by 0.001, and
process repeated. Also shown are the RWA predictions for st
ILRMs ~3! and for stable, spatially extended, subharmonic acou
librational modes~h! ~upper panel only!. For clarity, the figure
does not include several other stable and unstable predicted sta
ary solutions.

FIG. 2. Amplitude moduliuai
2nu from the stability eigenvector

description@Eq. ~3!#, applied to the finite time evolution of the
unstable ILRM atvd52.4, in the lattice of Fig. 1. For clarity, we
strobed the amplitudes at integer multiples of 4Td , i.e., twice the
librational period, to eliminate fluctuations caused by the subh
monic nature of the primary instability~thick solid line!. Only the
primary instability and secondary instability~thick dashed line! ac-
quire appreciable amplitudes, whereas those for all other eigen
tors ~thin solid lines! remain small.
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becomes large, it ‘‘switches off’’ the primary instability an
soon afterwards collapses as well. The system is then c
to the initial conditions and the process begins again. T
intervals between successive collapses of the primary in
bility are irregular, and Poincare sections prove that the
havior is indeed chaotic~Lyapunov exponent50.027 atvd
52.4). Note that the presence of dissipation in our sys
seems essential for localized chaos, since in the Hamilto
case (g50), so-called Arnold diffusion should prevent lo
calized chaos in general@10,11#. Note also that while the
range of parameter space for these chaotic ILRMs is q
small, other types of local chaos have been discussed
various driven dissipative systems that do not involve intr
sic localized modes@12#. In view of those results and th
chaotic ILRMs found here, we anticipate that driven chao
ILMs should also exist in Josephson ladders@13# and
damped driven lattice vibrational systems.

Decreasingvd further, we find that the localized chaot
attractor abruptly disappears atvd'2.38, due to aboundary
crisis @14#, in which the attractor crosses into another mod
basin of attraction and finally evolves into the stable, s
tially extended, subharmonic acoustic librational mode. C
tinuing to decrease the driving frequency, we find that t
mode becomes unstable atvd'2.04, below which it exhibits
temporal and spatially extended chaos, which can be vie
as a mixture of librational and rotational motion. We no
discuss how this chaotic response can be exploited to ge
ate stable, nonchaotic ILRMs.

In MD, we begin driving a 256-dipole lattice in this cha
otic regime atvd52, adding small random noise until th
chaos has fully developed. We then slowly ramp up the d
ing frequency, and as we leave the range of chaotic respo
we pick up rotational domains (r l'1) and subharmonic li-
brational domains (r l,1) from the chaotic state. This i
seen in Fig. 3. Asvd is increased, the librational respon

FIG. 3. Plots ofr l for the frequency ramping-up sequence a
plied to a 256-dipole lattice. The sequence starts atvd52, in the
region of spatial-temporal chaotic response~Lyapunov exponent
50.32). The driving frequency is held at this value for 100 cycl
after which it is linearly increased by 0.002 per cycle. Shown arer l

for ~a! vd52.05, ~b! vd52.30, ~c! vd52.60, and~d! vd52.90. As
the frequency increases beyond the chaotic region, the librat
and rotations ‘‘decouple,’’ and the librational response decrea
At large driving frequencies~d! the lattice is in a stationary state o
randomly spaced ILRMs, between which the dipoles execute v
small amplitude librations. The librations disappear atvd'2.9.
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decreases to zero, resulting in a stationary, randomly spa
array of stable ILRMs, most of which are composed of se
eral adjacent rotators. We have also used this genera
scheme for 2D lattices of scalar coupled dipoles and for
and 2D dipole lattices with unrestricted 3D rotations@8#. The
scheme proves to be very robust, leading in all cases to
dom arrays of ILRMs.

This technique for generating driven ILRMs from a ch
otic state also provides a means for their detection, thro
several unusual features exhibited by the associated pe
average power absorption. These are conveniently illustra
via the quantityr[1/N ( lr l , whereN is the total number of
sites. For stationary response,r is proportional to the absorp
tion divided byvd

2 , and Fig. 4 plotsr(vd) for several rep-
etitions of the ramping-up sequence discussed above. F
because of the small random noise used to establish the
tially chaotic response, each sequence produces a diffe
absorption curve. All of the curves exhibit three characte
tic regions:~a! a small, initially chaotic region,~b! a region
of roughly linear decrease until the librational response d
appears, and~c! a flat plateau (vd'2.9,. . . ,4.9) where, to a
good approximation, the absorption of the created ILRM
ray varies asvd

2 . The plateau heights directly reflect th
number of rotating dipoles captured from the initially chao
state. Finally, there is a cutoff atvd'5, beyond which the
parametric drive cannot supply energy fast enough to sus
the rotational motion.

In summary, our study of optically driven and damp
perfect lattices of rotating dipoles has revealed unusual
useful connections between intrinsic localized rotatio
modes and chaos. First we have shown that such modes
exhibit a long timescale chaotic behavior without losing th
localized character. A stability perturbation eigenvec
analysis of this mode’s MD trajectories showed that t
chaos stems from the dynamics of a pair of localized eig
vectors, which become strongly coupled anharmonica
over extended times, but remain localized. Second, we h
exploited the existence of a spatially extended chaotic
gime to demonstrate a simple and robust scheme for o
cally generating ILRMs, by slowly increasing the drivin
frequency out of the chaotic regime. Third, we have sho
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FIG. 4. Rescaled period-average absorption for the lattice
Fig. 3, for several ramping-up sequences. For each sequence
frequency was ramped as described in Fig. 3, and owing to
spatial-temporal chaos at the initial time, the final ILRM array
different for each. The small features atvd'2.3 are due to an
instability in the librating portions of the lattice.
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that monitoring the classical absorption during this proc
yields unusual signatures. These phenomena also carry
to higher-dimensional systems with unrestricted rotatio
degrees of freedom@8#.

Our model and parameter values were chosen both to
cilitate the MD simulations and to reveal interesting dynam
cal phenomena of coupled dipole rotator lattices. To tr
candidate experimental systems, however, the inclusion
additional aspects, such as vibrational degrees of free
and electronic polarizability will likely lead to even mor
complex dynamics. And while values of the damping co
stant could be computed perturbatively or estimated phen
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enologically from observed lifetimes of small-angle libr
tional transitions, the speculative quantum theory of vib
tional local mode damping in Ref.@15# suggests that modi
fications of our assumed linear form may be necessar
high energies. Nevertheless, our results strongly suggest
in extensions to more sophisticated models, the interplay
tween chaos and intrinsic localized modes can play an
portant and practical role in the study of strongly anharmo
lattices.
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